A dynamic parameterization modeling for the age-period-cohort mortality

P. Hatzopoulosa, S. Habermanb

aDepartment of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Samos, 83200, Greece
bFaculty of Actuarial Science and Insurance, Sir John Cass Business School, City University, 106 Bunhill Row, London EC1Y8TZ, UK

Abstract

An extended version of Hatzopoulos and Haberman (2009) dynamic parametric model is proposed for analyzing mortality structures, incorporating the cohort effect. A one-factor parameterized exponential polynomial in age effects within the generalized linear models (GLM) framework and sparse principal component analysis (SPCA) to time dependent GLM parameter estimates provides (marginal) estimates for a two-factor principal component (PC) approach structure. Modeling the two-factor residuals in the same way, in age-cohort effects, provides estimates for the (conditional) three-factor age-period-cohort model. The age-time and cohort related components are extrapolated using dynamic linear regression (DLR) models. Application is presented for England & Wales males (1841-2006).

Keywords: Cohort; Mortality forecasting; Generalized Linear Models; Sparse Principal Component analysis; Factor analysis; Dynamic Linear Regression; Bootstrap confidence intervals.

References

Human Mortality Database, University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at: http://www.mortality.org. (data downloaded at November, 2009).

